Construction of Multivariate Tight Frames via Kronecker Products

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Construction of Multivariate Tight Frames via Kronecker Products

Integer-translates of compactly supported univariate refinable functions φi , such as cardinal B-splines, have been used extensively in computational mathematics. Using certain appropriate direction vectors, the notion of (multivariate) box splines can be generalized to (non-tensor-product) compactly supported multivariate refinable functions from the φi ’s. The objective of this paper is to in...

متن کامل

Construction of Multivariate Compactly Supported Tight Wavelet Frames

Two simple constructive methods are presented to compute compactly supported tight wavelet frames for any given refinable function whose mask satisfies the QMF or sub-QMF conditions in the multivariate setting. We use one of our constructive methods in order to find tight wavelet frames associated with multivariate box splines, e.g., bivariate box splines on a three or four directional mesh. Mo...

متن کامل

Unimodality via Kronecker Products

We present new proofs and generalizations of unimodality of the q-binomial coefficients ( n k ) q as polynomials in q. We use an algebraic approach by interpreting the differences between numbers of certain partitions as Kronecker coefficients of representations of Sn. Other applications of this approach include strict unimodality of the diagonal q-binomial coefficients and unimodality of certa...

متن کامل

Constructing tight frames of multivariate functions

The paper presents a method of construction of tight frames for L(Ω), Ω ⊂ R. The construction is based on local orthogonal matrix extension of vectors associated with the transition matrices across consecutive resolution levels. Two explicit constructions are given, one for linear splines on triangular polygonal surfaces with arbitrary topology and the other for quadratic splines associated wit...

متن کامل

Construction of k-angle tight frames

Frames have become standard tools in signal processing due to their robustness to transmission errors and their resilience to noise. Equiangular tight frames (ETFs) are particularly useful and have been shown to be optimal for transmission under a certain number of erasures. Unfortunately, ETFs do not exist in many cases and are hard to construct when they do exist. However, it is known that an...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applied and Computational Harmonic Analysis

سال: 2001

ISSN: 1063-5203

DOI: 10.1006/acha.2001.0355